

https://africanjournalofbiomedicalresearch.com/index.php/AJBR

Afr. J. Biomed. Res. Vol. 28(1) (January 2025); 427-437 Research Article

The Effect of Supplementation with A Mixture of Organic Acids and A Mycotoxin Scavenger on Milk Composition and Metabolic Disease in Early Lactation Dairy Cows

Nassima Timsit^{1*}, Amira Fatma Hani^{1,2}, Lynda Ainouz^{1,3}, Amine Berghiche⁴, Mohamed Zaouani¹, Nassima Ait Issad^{2,5}, Abderrahim Bounar¹, Aymen Zouane¹, Djamel Khelef²

¹Laboratory of Food Hygiene and Quality Insurance System (HASAQ), Higher National Veterinary School, Abbes Street, Oued-Smar, 16000, Algiers, Algeria.

²Animal Health and Production Laboratory, Higher National Veterinary School, Abbes Street, Oued-Smar, 16000, Algiers, Algeria.

³Laboratory of Biology and Animal Physiology (LBPA), ENS Kouba, Algiers, Algeria.
 ⁴Science of Technics of Life, Agronomy and Veterinary Sciences Institute, Taoura, Souk Ahras University, Algeria.

⁵Institute of veterinary Sciences, Saad Dahleb University, BP270, Soumaa, 09000, Blida, Algeria.

*Corresponding author: Nassima Timsit *Email: n.timsit@etud.ensv.dz

Abstract:

In the dairy sector, improving the metabolic health of dairy cows at the start of lactation is crucial to ensure productivity and animal welfare. With this in mind, this study aims to evaluate the effects of supplementation with a mixture of organic acids and a mycotoxin sensor on milk composition and metabolic health in early-lactation Holstein dairy cows. This research was carried out on fifty-six multiparous cows, randomly divided into two groups: a control group (n= 28) with no feed supplementation and an experimental group (n= 28), receiving a daily supplement of 40 g of additive per cow for three months. The additive was mixed by hand into the cows' daily ration. Milk composition was analyzed, and blood samples were taken from all cows for biochemical analysis. The results showed that supplementation had no impact on milk composition nor on aspartate aminotransferase (ASAT) and creatinine levels in either sample (P > 0.05). However, alanine aminotransferase (ALAT) and cholesterol levels were initially higher in the treated group (P < 0.05), but this difference was no longer observed in the second sampling. In conclusion, this study indicates that supplementation with organic acids and mycotoxin scavengers has no positive effect on dairy cows milk composition or metabolic health.

Keywords: Organic acids; Dairy cows; Early lactation; Calcium propionate; Malic acid; Metabolic diseases; Mycotoxin sensor.

*Author for correspondence: Email: n.timsit@etud.ensv.dz

Received: 02/12/2024 Accepted: 30/01/2025

DOI: https://doi.org/10.53555/AJBR.v28i1.7135

© 2025 The Author(s).

This article has been published under the terms of Creative Commons Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0), which permits noncommercial unrestricted use, distribution, and reproduction in any medium, provided that the following statement is provided. "This article has been published in the African Journal of Biomedical Research"

Introduction:

The dairy industry occupies a central position in global agriculture, providing a vital source of nutrition and making a significant contribution to the world's economies. In modern dairy farming, maximizing the health and production of dairy cows is crucial. However, the transition period, encompassing the three weeks before and after calving, represents a critical time for the health and production performance of dairy cows (Kong et al., 2024; Rissanen et al., 2023) and represents a major challenge for farmers and their animals.

During this critical phase, cows undergo significant physiological changes in their metabolism, exposing them to a high risk of metabolic disorders linked to energy deficits (Kour et al., 2024) due to reduced feed intake and increased energy requirements for milk production (Orellana Rivas et al., 2021; Rearte et al., 2023). These disorders include ketosis, ruminal acidosis and fatty liver syndrome, compromising animal health and longevity while reducing milk production and increasing veterinary costs.

To guarantee animal welfare, farm sustainability and the quality of the milk produced, it is essential to understand and prevent the diseases that affect them. New approaches are being researched, including dietary probiotics, supplementation with prebiotics. phytochemicals, enzymes and organic acids (Pearlin et al., 2020). According to several studies, organic acid supplementation from various sources, such as feed and microbial fermentation, offers a promising alternative for improving the health and performance of dairy cows (Chahardoli et al., 2020; da Silva Dias et al., 2021; Kennedy et al., 2020; Stokes and Goff, 2001). These contribute to maintaining rumen pH (Carro and Ungerfeld, 2015), promote nutrient absorption (Haque et al., 2009; Nguyen et al., 2020) and have antimicrobial properties (Seppälä et al., 2013), thus strengthening the animal's natural defences during this critical period.

However, feeding dairy cows entails risks, including contamination of mycotoxin (Penagos-Tabares et al., 2024). This can adversely affect the performance, milk quality and health of cows, causing problems such as liver, neurological and kidney disorders, as well as reduced appetite, nutrient absorption and the reproductive and productive capacity of cows (Chen et al., 2023; Fink-Gremmels, 2008; Gallo et al., 2020). Therefore, in addition to ensuring that cows are fed a diet adapted to their needs, it is essential to take measures to prevent this mycotoxin contamination and limit their transfer into the milk in order to ensure the safety of dairy products, such as the use of special binders (Gallo et al., 2020; Kiyothong et al., 2012; McGuffey, 2017). This article examines the use of a mixture of organic

This article examines the use of a mixture of organic acids and a mycotoxin scavenger, whose trade name is (Rumitox; Tecnoaditivos espanoles avanzados sl, Navarre, Spain), as a supplement for dairy cows in early lactation. This experiment tests whether supplementation with organic acids and mycotoxin improves dairy cows' metabolic health and milk quality.

Materials and methods:

Ethical approval:

The experiment was carried out in accordance with the guidelines laid down by the Directive 2010/63/EU of the European Parliament for Animal Ethics Committee for the use of animal experimentation.

Animals and experimental design:

The study ran from December 2022 to February 2023 and involved a herd of dairy cows in the Boussaâda region, located south of the Wilaya of M'sila, Algeria, some 234 km southeast of the capital. This area is renowned for its arid, temperate climate, characterized by hot, dry summers and mild winters, sometimes cold at night. The cows selected for the study were in good clinical health and had not received any drug treatment prior to the start of the experiment. A total of fifty-six Holstein dairy cows (n=56) were included in our study. They were randomly divided into two groups of twentyeight cows: a control group and an experimental group, and the cows in both groups were kept under identical management conditions. Cows in the experimental group received a daily supplement of 40 g of the organic acid/mycotoxin scavenger mixture incorporated into their feed from the postpartum period until 60 days after calving. In contrast, no supplementation was given to the control group. All cows were milked twice daily, with a 12-hour interval between milkings. The owner uses a mechanical milking system provided by a mobile milking wagon.

Additive composition:

Rumitox is a purely biological feed additive for veterinary use. It comes in the form of a micronized powder designed to improve cow health. Its composition mainly comprises:

A mixture of organic acids and their salts, including sodium salt, malic acid, calcium propionate, calcium formate and calcium citrate.

Mycotoxin scavengers, such as yeast cell wall extracts, sepiolite and bentonite.

This product also contains propyl gallate and mineral salts.

Blood sampling and biochemical analysis:

Two blood samples were taken from each cow, one month apart. Blood was collected from the coccygeal vein using Vacuette® vacuum heparin tubes and immediately centrifuged at 3,000 rpm for 10 minutes. Plasma was separated and transported in a cooler to the analysis laboratory, where it was stored in a freezer until analysis. Biochemical analysis was performed at the medical biochemistry laboratory of Higher National Veterinary School, Algiers, Algeria. Standard plasma biochemical parameters, namely aminotransferase (ASAT), alanine aminotransferase (ALAT), cholesterol and creatinine, were measured using standard commercial kits (Spinreact, Sant Esteve De Bas (GI), Spain). Absorbances were measured using a spectrophotometer (Biochrom WPA Lightwave II, UK).

Milk sampling and analysis:

Milk samples were taken aseptically every month, after evening milking, at the same time as blood samples. Milk was collected individually in 50 ml sterile tubes. Immediately after harvesting, physicochemical analysis was carried out using a "LACTOSCAN SP Ultrasonic Milk Analyzer". Fat, protein, lactose, mineral, non-fat solids and total solids contents were measured. In addition, the fat: protein ratio (F: P) was calculated.

Statistical analysis of data:

Data entry and statistical analysis were carried out by comparing means using software (IBM SPSS Statistics 26). Data were not normally distributed and analyzed with the Mann-Whitney U test to assess group differences. In contrast, the Kruskal-Wallis test assessed differences between the two measurement times. Data are expressed as mean \pm standard error of the mean; P <0.05 was considered statistically significant.

Results:

• Blood metabolites and animal health:

The mean values of ASAT, ALAT, creatinine, and cholesterol in dairy cows' blood plasma are shown in Table (1) each time. The addition of the acidifier showed no significant variation between treatment and control groups regarding ASAT concentration and creatinine either at time 1 (89.32 vs 80.78, p=0.193 for ASAT and 12.67 vs 12.38, p=0.533 for creatinine) or time 2 (56.25 vs. 43.21%, p=0.634 for ASAT and 12.33 vs. 11.72%, p=0.554 for creatinine). In contrast, ALAT and cholesterol concentrations were significantly higher in the treated group at time 1 (31.26 vs 26.56, p=0.009 for ALAT and 2.28 vs 1.84%, p=0.001 for cholesterol). However, this difference was no longer observed at time 2 (28.06 vs 27.46, p=0.857 for ALAT and 2.68 vs 2.85%, p=0.993 for cholesterol).

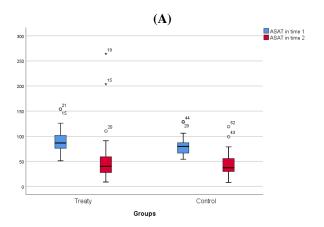

The cows included in the trial showed no cases of ketosis or milk fever during the study period. The incidence of acidosis was similar in both groups, with three cases observed in the control cows and three in those receiving the feed supplement.

Table 1: Effects of supplementation with a mixture of OAs and mycotoxin sensors on blood metabolites in dairy

cows				
	Treatment*		n volue	
Parameters ¹	Control	Treaty	p value	
ASAT (Ul/l)				
Time 1	80,78±3,60 a	89,32±4,89 a	0,193	
Time 2	43,21±4,77 a	56,25±10,52 a	0,634	
ALAT (Ul/l)				
Time 1	26.56 ± 1.30	31,26±1,09	0,009	
Time 2	$27,46\pm3,05$	28,06±3,21	0,857	
Cholesterol (g	(I)			
Time 1	1,84±0,11 a	2,28±0,09 a	0,001	
Time 2	2,85±0,20 a	2,68±0,14 a	0,993	
Creatinine (m	g/l)			
Time 1	12,38±0,38	12,67±0,28	0,533	
Time 2	11,72±0,57	12,33±0,61	0,554	

^{*} Control (without additive), treated (with 40 g/cow/day of additive).

Values represent mean \pm standard error. Means in a column with a common exponent differ significantly (p<0.05)

¹ ASAT = aspartate aminotransferase; ALAT = alanine aminotransferase; Time 1: represents the first sample; time 2: represents the second sample.

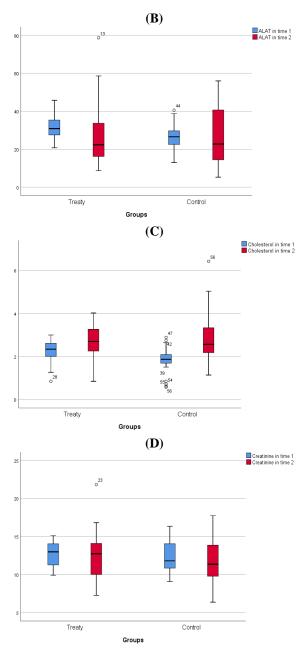


Figure 1: Box plot illustrating the effect of organic acid supplementation on levels of AST (A), ALT (B), cholesterol (C) and creatinine (D) in treated and control groups at times 1 and 2

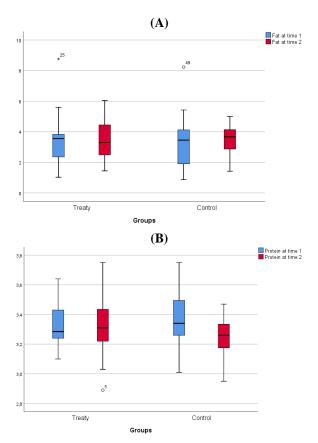
• Milk composition :

Table (2) shows the acidifier and mycotoxin sensor supplementation results on milk composition. The results for acidifier supplementation show no significant variation between the treated and control groups for all milk components.

The data indicate that, for milk fat levels, no statistically significant difference was observed between the treated and control groups, either at time 1 (3.32% vs. 3.27%, p=0.83) or at time 2 (3.43% vs. 3.46%, p=0.83). However, for protein levels, although the difference between groups was not significant at time 1 (3.33% vs 3.36%, p=0.42), a downward trend was observed in the treated group at time 2 compared with the control group (3.31% vs 3.24%, p=0.12).

Lactose concentrations in milk tended to be higher for cows in the control group at each measurement, at time 1 (5.05% vs 5.13%, p=0.35) and at time 2 (4.99% vs 5.05%, p=0.99).

With the addition of the acidifier at time 2, the percentages of fat-free and total dry matter and the mineral content of the milk appeared to increase slightly. However, these differences were not significant (8.99% vs 8.87%, p=0.17), (12.49% vs 12.33%, p=0.56), and (0.74% vs 0.72%, p=0.10), respectively. Similarly, at time 1, there was no significant difference between the two batches for these parameters (9.19% vs 9.20%, p=0.68) and (12.43% vs 12.45%, p=0.99) (0.74% vs 0.75%, p=0.44) respectively.


Table 2: Effects of supplementation with a mixture of OAs and mycotoxin sensors on milk components in dairy

cows					
Parameters ¹	Treatment		p value		
1 al allicuels	Control	Treaty	p value		
Fat (%)					
Time 1	$3,27\pm0,30$	$3,32\pm0,30$	0,83		
Time 2	$3,46\pm0,18$	$3,43\pm0,24$	0,83		
Protein (%)					
Time 1	$3,36\pm0,03$	$3,33\pm0,02^{a}$	0,42		
Time 2	3,24±0,02	3,31±0,03a	0,12		
Fat:protein ra	atio				
Time 1	$0,97\pm0,08$	$1,00\pm0,08$	0,83		
Time 2	1,07±0,06	$1,04\pm0,07$	0,65		
Lactose (%)					
Time 1	5,13±0,07	5,05±0,05	0,35		
Time 2	$5,05\pm0,06$	$4,99\pm0,09$	0,99		
Non-fat solids	s (%)				
Time 1	9,20±0,09	$9,19\pm0,09^{a}$	0,68		
Time 2	8,87±0,06	8,99±0,12a	0,17		
Total solids (//o)				
Time 1	12,45±0,32	12,43±0,31	0,99		
Time 2	12,33±0,17	12,49±0,22	0,56		
Mineral matte	er (%)				
Time 1	0,75±0,01	0,74±0,01a	0,44		
Time 2	0,72±0,00	0,74±0,01a	0,10		

¹ Time 1: represents the first sampling; time 2: represents the second sampling.

Means in a column with a common exponent differ significantly (p<0.05)

Values represent mean \pm standard error.

^{*} Control (without additive), treated (with 40 g/cow/day of additive).

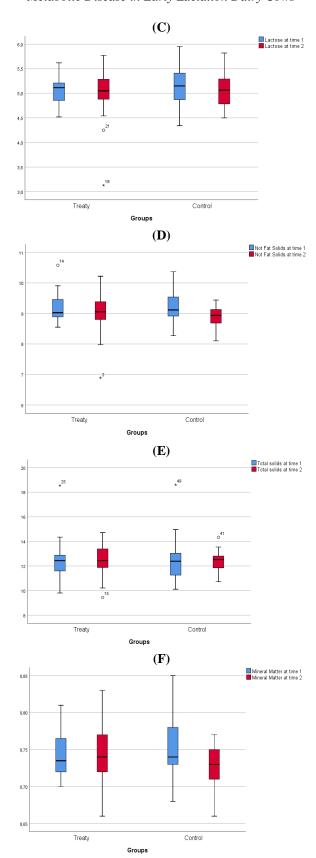


Figure 2: Box pot illustrating the effect of organic acid supplementation on levels of fat (A), protein (B), lactose (C), Non-fat solids (D), total solids (E), and mineral matter (F) in treated and control groups at times 1 and 2

Discussion:

Propionate, resulting from ruminal fermentation of starch and other organic matter, plays a vital role as the primary precursor of glucose, especially in the peripartum period (Larsen and Kristensen, 2013). Decreased appetite in the run-up to parturition can reduce the availability of propionate (Baird et al., 1980). The increasing use of non-metabolizable sources of

propionate that can be efficiently utilized in the rumen, such as calcium propionate, has been observed in recent years.

Feeding organic acids to dairy cows has already been described as an alternative way of improving their performance, particularly milk production and the percentage of fat, protein and lactose, even under stressful conditions (Ali et al., 2013; Fontoura et al., 2022). In this study, an acidifier as a glycogenic supplement was administered to dairy cows in early lactation to provide additional glycogenic substrates. Variations in milk component concentrations were anticipated. However, no significant differences were observed in protein and fat concentrations following treatment. These results are in line with previous studies conducted on calcium propionate supplementation of dairy cows (Liu et al., 2010; McNamara and Valdez, 2005; Zhang et al., 2022a, 2022b) as well as propionic acid supplementation (da Silva Dias et al., 2021; DeFrain et al., 2005) or malic acid (Devant et al., 2007; Kung et al., 1982; Vicini et al., 2003; Wang et al., 2009) which had no significant impact on milk components. However, these results differ from those of some studies (Martins et al., 2019) and (Gheller et al., 2020) supplemented with calcium propionate and propionic respectively, which reported significant differences. Other studies (El-Zaiat et al., 2019; Zhao et al., 2023), noted numerical but non-significant increases in protein and fat concentrations in milk. These inconsistencies could be linked to the composition of the diet adopted and the dose of organic acid used.

The post-partum period is associated with increased disease incidence, particularly in highly productive cows that have difficulty meeting their high energy requirements. This difficulty is exacerbated by a reduction in their feed intake, resulting in a negative energy imbalance. Studies have shown that organic acid supplementation improves energy status (Mandebvu et al., 2003; Wang et al., 2009). This translates into a reduction in health problems such as retained placenta, hypocalcemia, displaced abomasum and metritis, as observed in a study by (Stokes and Goff, 2001) where cows were given calcium propionate 4 hours before and 4 hours after calving. In practice, monitoring the energy balance of dairy cows is a crucial element in optimal herd management.

According to the literature, the evaluation of dairy parameters such as fat, protein and lactose offers a non-invasive and informative method for monitoring the health and productivity of dairy herds (Antanaitis et al., 2023; Atasever and Stádník, 2015; Rocchetti and O'Callaghan, 2021). This method is also a valuable indicator of the energy balance of dairy cows. Reduced protein and lactose levels in milk and a high fat: protein ratio are signs of an energy deficit (Sakowski et al., 2012). On average, the butterfat content varies between 3.5 and 5%, while the protein content varies between 3.0 and 3.5 (Cauty and Perreau, 2009).

Analysis of our study revealed that milk fat content, in both groups and at both measurement times, was below the recommended optimum values, suggesting possible rumen dysfunction or metabolic disease. Furthermore, it was observed that feed type influences milk composition. Furthermore, the decrease in fat content could be attributed to a low intake of forages due to their low fibre content (Garamu, 2019). Protein levels, on the other hand, are optimal.

In addition, the ratio of milk fat to protein also provides information on health status and the onset of certain metabolic disorders and can be used to detect cows suffering from an energy deficit (Antanaitis et al., 2023; Bunevski et al., 2020; Buttchereit et al., 2010; Jenkins et al., 2015). Ideally, a fat: protein ratio (F:P) should be between 1.2 and 1.4 (Čejna and Chládek, 2006), while ratios exceeding 1.5 increase the risk of ketosis, displaced abomasum, lameness and mastitis (Heuer et al., 1999; Klein et al., 2019) and those below 1.1 signal subacute rumen acidosis (Đuričić et al., 2020).

None of the cows in the trial developed ketosis during the study period. Our results concur with those of (Mandebvu et al., 2003), who observed similar results using an energy supplement containing propionic acid. In contrast, the study by (Stokes and Goff, 2001) reported one case of ketosis in the control group and two cases among animals receiving calcium propionate. However, three cases of acidosis were recorded in both the treated and control groups. These observations are corroborated by the F:P ratio of the two groups, which, according to the literature, is not in the ideal range. The presence of acidosis could confirm the decrease in fat levels, as it could result in less efficient digestion of rumen fibres when pH falls. However, it is from the end products of fibre digestion that the cow synthesizes milk fat.

This is in contrast to the studies carried out by Zhang et al. (2022a, 2022b) and Zhao et al. (2023), which reported that calcium propionate supplementation improved milk fat/protein ratios in the supplemented groups compared with the control group, but not significantly. These results indicate the effect of calcium propionate in reducing energy deficiency.

Malic acid supplementation influences lactate absorption by acting on the primary rumen bacterium, *Selenomonas ruminatum*. Once glucose has been depleted from the medium, this bacterium uses lactate as a source of carbon and energy (Sahoo and Jena, 2014), which converts into propionic acid. This reduces lactic acid levels in the rumen, preventing the severe pH drops responsible for acidosis (Carro and Ungerfeld, 2015; Sahoo and Jena, 2014). In addition, this improvement in the rumen environment promotes better utilization of the cellulosic portion of the ration and an increase in the butyrous rate. The emergence of cases of acidosis in the treated group could be attributed to an insufficiently adjusted supplement dose to obtain measurable effects on disease reduction.

Transformed into propionic acid in the rumen, calcium propionate is absorbed into the bloodstream and transported to the liver, which converts it into glucose. The latter is then taken up by mammary epithelial cells via a passive process that facilitates the synthesis of lactose, a crucial component of milk, and helps maintain the osmotic balance between the alveolar lumen and blood (Güner et al., 2022; Zhao, 2014). Our study

revealed lactose levels within physiological ranges for dairy cattle, averaging around 5% (4.8-5.2%) (Roca-Fernández, 2014). Thus, the presence of lactose in milk could be an indicator of healthy mammary glands.

In addition to its role in glucose production, calcium propionate may also contribute to the regulation of calcium balance and the overall health of dairy cows (Zhang et al., 2020). This contribution could explain the absence of milk fever cases observed during our study. Liver function is vital in maintaining dairy cows production performance in early lactation. This function can be assessed by measuring various enzymes, notably ALAT and ASAT. Elevated serum levels of these enzymes often indicate hepatocyte damage and impaired liver function (Puppel and Kuczyńska, 2016; Sakowski et al., 2012).

Our study showed ALAT activities above the usual mean values (15.58-23.24 U/L) in both groups, suggesting hepatic steatosis. This finding aligns with the study conducted by (Du et al., 2018), which revealed elevated serum ALAT levels in cows with hepatic steatosis (24.7-32.96 U/L).

According to Tainturier et al. (1984), ASAT activity can show irregular and small variations during gestation and early lactation. Maximum activity is observed at the start of lactation, followed by a gradual decrease as lactation progresses (Sakowski et al., 2012; Stojević et al., 2005). This is consistent with the results of our study, which showed a significant decrease in ASAT activity between time 1 and time 2.

Conclusion:

This mixture of organic acids and mycotoxin scavengers had no effect on milk composition, particularly fat, protein, and lactose levels, or creatinine and liver enzymes like ASAT in dairy cow plasma at the start of lactation. The therapy group started with slightly increased ALAT and cholesterol concentrations, but these changes did not last. These findings recommend more investigation with other supplement doses or a larger animal population. This would help us evaluate this approach's potential impact and make more exact dairy breeding and feeding recommendations.

References:

- Ali, A., Khan, S., Mobashar, M., Inam, M., Ahmed, I., Khan, N.A., Ali, M., Khan, H., 2013. Effect of Different Levels of Organic Acids Supplementation on Feed Intake, Milk Yield and Milk Composition of Dairy Cows during Thermal Stress. Greener Journal of Agricultural Sciences 3, 762-768.
- Antanaitis, R., Džermeikaitė, K., Januškevičius, V., Šimonytė, I., Baumgartner, W., 2023. In-Line Registered Milk Fat-to-Protein Ratio for the Assessment of Metabolic Status in Dairy Cows. Animals 13, 3293. https://doi.org/10.3390/ani13203293
- 3. Atasever, S., Stádník, L., 2015. Factors affecting daily milk yield, fat and protein percentage, and somatic cell count in primiparous Holstein cows. Indian Journal of Animal Research 49, 313-316. https://doi.org/10.5958/0976-0555.2015.00048.5

- Baird, G.D., Lomax, M.A., Symonds, H.W., Shaw, S.R., 1980. Net hepatic and splanchnic metabolism of lactate, pyruvate and propionate in dairy cows in vivo in relation to lactation and nutrient supply. Biochemical Journal 186, 47-57. https://doi.org/10.1042/bj1860047
- Bunevski, G., Nikitović, J., Radevska, M., Prishenk, J., Klincarov, A., Temov, G., 2020. Milk protein and fat ratio as an indicator for methabolitic disorders in dairy cows. XXV SAVETOVANJE O BIOTEHNOLOGIJI 271-277.
- Buttchereit, N., Stamer, E., Junge, W., Thaller, G., 2010. Evaluation of five lactation curve models fitted for fat:protein ratio of milk and daily energy balance. Journal of Dairy Science 93, 1702-1712. https://doi.org/10.3168/jds.2009-2198
- Carro, M.D., Ungerfeld, E.M., 2015. Utilization of Organic Acids to Manipulate Ruminal Fermentation and Improve Ruminant Productivity, in: Puniya, A.K., Singh, R., Kamra, D.N. (Eds.), Rumen Microbiology: From Evolution to Revolution. Springer India, New Delhi, pp. 177-197. https://doi.org/10.1007/978-81-322-2401-3_13
- 8. Cauty, I., Perreau, J.-M., 2009. Dairy herd management. France Agricole Editions.
- Čejna, V., Chládek, G., 2006. The importance of monitoring changes in milk fat to protein ratio in Holstein cows during lactation. Journal of Central European Agriculture 6, 539-546.
- Chahardoli, A., Jalilian, F., Memariani, Z., Farzaei, M.H., Shokoohinia, Y., 2020. Chapter 26 - Analysis of organic acids, in: Sanches Silva, A., Nabavi, S.F., Saeedi, M., Nabavi, S.M. (Eds.), Recent Advances in Natural Products Analysis. Elsevier, pp. 767-823. https://doi.org/10.1016/B978-0-12-816455-6.00026-3
- 11. Chen, X., Wu, H., Tang, X., Zhang, Z., Li, P., 2023. Recent Advances in Electrochemical Sensors for Mycotoxin Detection in Food. Electroanalysis 35, e202100223. https://doi.org/10.1002/elan.202100223
- 12. da Silva Dias, M.S., Ghizzi, L.G., Marques, J.A., Nunes, A.T., Grigoletto, N.T.S., Gheller, L.S., Silva, T.B.P., Silva, G.G., Lobato, D.N., Costa e Silva, L.F., Rennó, F.P., 2021. Effects of organic acids in total mixed ration and feeding frequency on productive performance of dairy cows. Journal of Dairy Science 104, 5405-5416.
- DeFrain, J.M., Hippen, A.R., Kalscheur, K.F., Patton, R.S., 2005. Effects of feeding propionate and calcium salts of long-chain fatty acids on transition dairy cow performance. J Dairy Sci 88, 983-993. https://doi.org/10.3168/jds.S0022-0302(05)72766-1

https://doi.org/10.3168/jds.2020-19419

- 14. Devant, M., Bach, A., García, J.A., 2007. Effect of Malate Supplementation to Dairy Cows on Rumen Fermentation and Milk Production in Early Lactation. Journal of Applied Animal Research 31, 169-172.
 - https://doi.org/10.1080/09712119.2007.9706655
- 15. Du, X., Liu, G., Loor, J.J., Fang, Z., Bucktrout, R., Yang, Y., Ye, Q., Shi, Z., Shen, T., Wang, X., Peng,

- Z., Zhao, C., Lv, B., Xing, D., Zhu, Y., Li, Xiaobing, Li, Xinwei, 2018. Impaired hepatic autophagic activity in dairy cows with severe fatty liver is associated with inflammation and reduced liver function. Journal of Dairy Science 101, 11175-11185. https://doi.org/10.3168/jds.2018-15120
- 16. Đuričić, D., Ljubić, B.B., Vince, S., Turk, R., Valpotić, H., Žaja, I.Ž., Maćešić, N., Benić, M., Getz, I., Samardžija, M., 2020. Effects of dietary clinoptilolite supplementation on β-hydroxybutirate serum level and milk fat to protein ratio during early lactation in Holstein-Friesian cows. Microporous and Mesoporous Materials 292, 109766. https://doi.org/10.1016/j.micromeso.2019.109766
- 17. El-Zaiat, H.M., Kholif, A.E., Mohamed, D.A., Matloup, O.H., Anele, U.Y., Sallam, S.M., 2019. Enhancing lactational performance of Holstein dairy cows under commercial production: malic acid as an option. J Sci Food Agric 99, 885-892. https://doi.org/10.1002/jsfa.9259
- 18. Fink-Gremmels, J., 2008. The role of mycotoxins in the health and performance of dairy cows. The Veterinary Journal, Special Issue: Production Diseases of the Transition Cow 176, 84-92. https://doi.org/10.1016/j.tvjl.2007.12.034
- Fontoura, A.B.P., Javaid, A., Maza-Escolà, V.S. de la, Salandy, N.S., Fubini, S.L., Grilli, E., McFadden, J.W., 2022. Heat stress develops with increased total-tract gut permeability, and dietary organic acid and pure botanical supplementation partly restores lactation performance in Holstein dairy cows. Journal of Dairy Science 105, 7842-7860. https://doi.org/10.3168/jds.2022-21820
- 20. Gallo, A., Minuti, A., Bani, P., Bertuzzi, T., Cappelli, F.P., Doupovec, B., Faas, J., Schatzmayr, D., Trevisi, E., 2020. A mycotoxin-deactivating feed additive counteracts the adverse effects of regular levels of Fusarium mycotoxins in dairy cows. Journal of Dairy Science 103, 11314-11331. https://doi.org/10.3168/jds.2020-18197
- 21. Garamu, K., 2019. Significance of Feed Supplementation on Milk Yield and Milk Composition of Dairy Cow. JDVS 13, 1-9. https://doi.org/10.19080/JDVS.2019.13.555860
- 22. Gheller, L.S., Ghizzi, L.G., Marques, J.A., Takiya, C.S., Grigoletto, N.T.S., Dias, M.S.S., Silva, T.B.P., Nunes, A.T., da Silva, G.G., Fernandes, L.G.X., Rennó, L.N., Rennó, F.P., 2020. Effects of organic acid-based products added to total mixed ration on performance and ruminal fermentation of dairy cows. Animal Feed Science and Technology 261, 114406.
 - https://doi.org/10.1016/j.anifeedsci.2020.114406
- 23. Güner, B., Ertürk, M., Tavşanlı, H., Guner, T., 2022. The effect of somatic cell count on milk yield and milk composition on day seven postpartum in cows. Veterinarski arhiv 92, 145-153. https://doi.org/10.24099/vet.arhiv.1421
- 24. Haque, M.N., Chowdhury, R., Islam, K.M.S., Akbar, M.A., 2009. Propionic Acid Is An Alternative To Antibiotics In Poultry Diet. Bangladesh Journal of

- Animal Science 38, 115-122. https://doi.org/10.3329/bjas.v38i1-2.9920
- 25. Heuer, C., Schukken, Y.H., Dobbelaar, P., 1999. Postpartum Body Condition Score and Results from the First Test Day Milk as Predictors of Disease, Fertility, Yield, and Culling in Commercial Dairy Herds. Journal of Dairy Science 82, 295-304. https://doi.org/10.3168/jds.S0022-0302(99)75236-7
- 26. Jenkins, N.T., Peña, G., Risco, C., Barbosa, C.C., Vieira-Neto, A., Galvão, K.N., 2015. Utility of inline milk fat and protein ratio to diagnose subclinical ketosis and to assign propylene glycol treatment in lactating dairy cows. Can Vet J 56, 850-854.
- 27. Kennedy, K.M., Donkin, S.S., Allen, M.S., 2020. Effects of propionate concentration on short-term metabolism in liver explants from dairy cows in the postpartum period. Journal of Dairy Science 103, 11449-11460. https://doi.org/10.3168/jds.2020-18914
- 28. Kiyothong, K., Rowlinson, P., Wanapat, M., Khampa, S., Kiyothong, K., Rowlinson, P., Wanapat, M., Khampa, S., 2012. Effect of mycotoxin deactivator product supplementation on dairy cows. Anim. Prod. Sci. 52, 832-841. https://doi.org/10.1071/AN11205
- 29. Klein, S.-L., Scheper, C., Brügemann, K., Swalve, H.H., König, S., 2019. Phenotypic relationships, genetic parameters, genome-wide associations, and identification of potential candidate genes for ketosis and fat-to-protein ratio in German Holstein cows. Journal of Dairy Science 102, 6276-6287. https://doi.org/10.3168/jds.2019-16237
- 30. Kong, F., Wang, F., Zhang, Y., Wang, S., Wang, W., Li, S., 2024. Repeated inoculation with rumen fluid accelerates the rumen bacterial transition with no benefit on production performance in postpartum Holstein dairy cows. Journal of Animal Science and Biotechnology 15, 17. https://doi.org/10.1186/s40104-023-00963-9
- 31. Kour, S., Sharma, N., Guttula, P.K., Gupta, M.K., Santos, M.V.D., Bacic, G., Macesic, N., Pathak, A.K., Son, Y.-O., 2024. Identification and validation of putative biomarkers by in silico analysis, mRNA expression and oxidative stress indicators for negative energy balance in buffaloes during transition period. Anim Biosci 37, 522-535. https://doi.org/10.5713/ab.23.0284
- 32. Kung, L., Huber, J.T., Krummrey, J.D., Allison, L., Cook, R.M., 1982. Influence of Adding Malic Acid to Dairy Cattle Rations on Milk Production, Rumen Volatile Acids, Digestibility, and Nitrogen Utilization1. Journal of Dairy Science 65, 1170-1174. https://doi.org/10.3168/jds.S0022-0302(82)82328-X
- 33. Larsen, M., Kristensen, N.B., 2013. Precursors for liver gluconeogenesis in periparturient dairy cows*. Animal 7, 1640-1650. https://doi.org/10.1017/S1751731113001171
- 34. Liu, Q., Wang, C., Yang, W.Z., Guo, G., Yang, X.M., He, D.C., Dong, K.H., Huang, Y.X., 2010. Effects of calcium propionate supplementation on lactation performance, energy balance and blood

- metabolites in early lactation dairy cows. J Anim Physiol Anim Nutr (Berl) 94, 605-614. https://doi.org/10.1111/j.1439-0396.2009.00945.x
- 35. Mandebvu, P., Ballard, C.S., Sniffen, C.J., Tsang, D.S., Valdez, F., Miyoshi, S., Schlatter, L., 2003. Effect of feeding an energy supplement prepartum and postpartum on milk yield and composition, and incidence of ketosis in dairy cows. Animal Feed Science and Technology 105, 81-93. https://doi.org/10.1016/S0377-8401(03)00058-0
- 36. Martins, W.D.C., Cunha, S.H.M., Boscarato, A.G., Lima, J.S. de, Junior, J.D.E., Uliana, G.C., Pedrini, M., Alberton, L.R., 2019. Calcium Propionate Increased Milk Parameters in Holstein Cows. Acta Scientiae Veterinariae 47. https://doi.org/10.22456/1679-9216.97154
- 37. McGuffey, R.K., 2017. *A 100-year review:* Metabolic modifiers in dairy cattle nutrition. Journal of Dairy Science 100, 10113-10142. https://doi.org/10.3168/jds.2017-12987
- 38. McNamara, J.P., Valdez, F., 2005. Adipose Tissue Metabolism and Production Responses to Calcium Propionate and Chromium Propionate*. Journal of Dairy Science 88, 2498-2507. https://doi.org/10.3168/jds.S0022-0302(05)72927-1
- 39. Nguyen, D.H., Seok, W.J., Kim, I.H., 2020. Organic Acids Mixture as a Dietary Additive for Pigs-A Review. Animals 10, 952. https://doi.org/10.3390/ani10060952
- 40. Orellana Rivas, R.M., Gutierrez-Oviedo, F.A., Komori, G.H., Beihling, V.V., Marins, T.N., Azzone, J., Bernard, J.K., Tao, S., 2021. Effect of supplementation of a mixture of gluconeogenic precursors during the transition period on performance, blood metabolites and insulin concentrations and hepatic gene expression of dairy cows. Animal Feed Science and Technology 272, 114791.
 - https://doi.org/10.1016/j.anifeedsci.2020.114791
- 41. Pearlin, B.V., Muthuvel, S., Govidasamy, P., Villavan, M., Alagawany, M., Ragab Farag, M., Dhama, K., Gopi, M., 2020. Role of acidifiers in livestock nutrition and health: A review. Journal of Animal Physiology and Animal Nutrition 104, 558-569. https://doi.org/10.1111/jpn.13282
- 42. Penagos-Tabares, F., Khiaosa-ard, R., Faas, J., Steininger, F., Papst, F., Egger-Danner, C., Zebeli, Q., 2024. A 2-year study reveals implications of feeding management and exposure to mycotoxins on udder health, performance, and fertility in dairy herds. Journal of Dairy Science 107, 1124-1142. https://doi.org/10.3168/jds.2023-23476
- 43. Puppel, K., Kuczyńska, B., 2016. Metabolic profiles of cow's blood; a review. Journal of the Science of Food and Agriculture 96, 4321-4328. https://doi.org/10.1002/jsfa.7779
- 44. Rearte, R., Lorenti, S.N., Dominguez, G., de la Sota, R.L., Lacau-Mengido, I.M., Giuliodori, M.J., 2023. Monitoring of Body Condition in Dairy Cows to Assess Disease Risk at the Individual and Herd Level. Animals 13, 3114. https://doi.org/10.3390/ani13193114

- 45. Rissanen, P., Halmemies-Beauchet-Filleau, A., Niku, M., Soveri, T., Vanhatalo, A., Kokkonen, T., 2023. Effects of prepartum concentrate feeding on reticular pH, plasma energy metabolites, acute phase proteins, and milk performance in grass silage fed dairy cows. Journal of Dairy Science 107, 2832-2849. https://doi.org/10.3168/jds.2023-23885
- 46. Roca-Fernández, A.I., 2014. Animal factors condition milk performance and quality of grazing dairy cows: Review Article. Iranian Journal of Applied Animal Science 4, 1-20.
- 47. Rocchetti, G., O'Callaghan, T.F., 2021. Application of metabolomics to assess milk quality and traceability. Current Opinion in Food Science 40, 168-178. https://doi.org/10.1016/j.cofs.2021.04.005
- 48. Sahoo, A., Jena, B., 2014. Organic Acids as Rumen Modifiers. International Journal of Science and Research 3, 2262-2266. https://doi.org/30310652
- 49. Sakowski, T., Kuczyńska, B., Puppel, K., Metera, E., Słoniewski, K., Barszczewski, J., 2012. Relationships between physiological indicators in blood, and their yield, as well as chemical composition of milk obtained from organic dairy cows. Journal of the Science of Food and Agriculture 92, 2905-2912. https://doi.org/10.1002/jsfa.5900
- 50. Seppälä, A., Heikkilä, T., Mäki, M., Miettinen, H., Rinne, M., 2013. Controlling aerobic stability of grass silage-based total mixed rations. Animal Feed Science and Technology 179, 54-60. https://doi.org/10.1016/j.anifeedsci.2012.11.011
- 51. Stojević, Z., Pirsljin, J., Milinković-Tur, S., Zdelar-Tuk, M., Beer Ljubic, B., 2005. Activities of AST, ALT and GGT in clinically healthy dairy cows during lactation and in the dry period. Veterinarski Arhiv 75, 67-73.
- 52. Stokes, S.R., Goff, J.P., 2001. Evaluation of Calcium Propionate and Propylene Glycol Administered into the Esophagus of Dairy Cattle at Calving1. Prof Ani Sci 17, 115-122. https://doi.org/10.15232/S1080-7446(15)31607-7
- 53. Tainturier, D., Braun, J.P., Rico, A.G., Thouvenot, J.P., 1984. Variations in blood composition in dairy cows during pregnancy and after calving. Research in Veterinary Science 37, 129-131. https://doi.org/10.1016/S0034-5288(18)31892-7
- 54. Vicini, J.L., Bateman, H.G., Bhat, M.K., Clark, J.H., Erdman, R.A., Phipps, R.H., Van Amburgh, M.E., Hartnell, G.F., Hintz, R.L., Hard, D.L., 2003. Effect of Feeding Supplemental Fibrolytic Enzymes or Soluble Sugars with Malic Acid on Milk Production. Journal of Dairy Science 86, 576-585. https://doi.org/10.3168/jds.S0022-0302(03)73636-4
- 55. Wang, C., Liu, Q., Yang, W.Z., Dong, Q., Yang, X.M., He, D.C., Dong, K.H., Huang, Y.X., 2009. Effects of malic acid on feed intake, milk yield, milk components and metabolites in early lactation Holstein dairy cows. Livestock Science 124, 182-188. https://doi.org/10.1016/j.livsci.2009.01.016
- Zhang, F., Nan, X., Wang, H., Guo, Y., Xiong, B.,
 Research on the Applications of Calcium Propionate in Dairy Cows: A Review. Animals

- (Basel) 10, 1336. https://doi.org/10.3390/ani10081336
- 57. Zhang, F., Zhao, Y., Wang, H., Nan, X., Wang, Y., Guo, Y., Xiong, B., 2022a. Alterations in the Milk Metabolome of Dairy Cows Supplemented with Different Levels of Calcium Propionate in Early Lactation. Metabolites 12, 699. https://doi.org/10.3390/metabo12080699
- 58. Zhang, F., Zhao, Y., Wang, Y., Wang, H., Guo, Y., Xiong, B., 2022b. Effects of calcium propionate on milk performance and serum metabolome of dairy cows in early lactation. Animal Feed Science and Technology 283, 115185. https://doi.org/10.1016/j.anifeedsci.2021.115185
- 59. Zhao, C., Shen, B., Huang, Y., Kong, Y., Tan, P., Zhou, Y., Yang, J., Xu, C., Wang, J., 2023. Effects of Chromium Propionate and Calcium Propionate on Lactation Performance and Rumen Microbiota in Postpartum Heat-Stressed Holstein Dairy Cows. Microorganisms 11, 1625. https://doi.org/10.3390/microorganisms11071625
- 60. Zhao, F.-Q., 2014. Biology of Glucose Transport in the Mammary Gland. J Mammary Gland Biol Neoplasia 19, 3-17. https://doi.org/10.1007/s10911-013-9310-8