

https://africanjournalofbiomedicalresearch.com/index.php/AJBR

Afr. J. Biomed. Res. Vol. 28(2s) (January 2025); 1058-1062 Research Article

Advancements in Pharmacology for Alzheimer's Disease: From Symptomatic Treatment to Disease-Modifying Drugs

Adnan Jehangir^{1*}, Farhana Ayub²

^{1*}Biomedical sciences department, College of Medicine, King Faisal University, Al Ahsa, 31982, Saudi Arabia, amalik@kfu.edu.sa

²Biomedical sciences department, college of medicine, King Faisal University, Al Ahsa, 31982, Saudi Arabia, fmalik@kfu.edu.sa

*Corresponding Author: Adnan Jehangir

*Email: amalik@kfu.edu.sa

Abstract

Objective: The primary aim of this study is to evaluate the efficacy and safety of emerging disease-modifying therapies in Alzheimer's disease, comparing their effects with traditional symptomatic treatments.

Methods: This randomized, double-blind, placebo-controlled trial enrolled 200 participants diagnosed with mild to moderate Alzheimer's disease. Participants were randomly assigned to one of four groups: (1) symptomatic treatment with Donepezil, (2) symptomatic treatment with Memantine, (3) disease-modifying therapy with a monoclonal anti-amyloid antibody (e.g., Aducanumab), or (4) placebo. The primary endpoint was the change in cognitive function, assessed using the Alzheimer's Disease Assessment Scale-Cognitive Subscale (ADAS-Cog) over 12 months. Secondary outcomes included changes in functional status (Activities of Daily Living scale), quality of life (QoL-AD), and adverse events.

Results: Cognitive Function: The disease-modifying therapy group showed a statistically significant reduction in ADAS-Cog scores compared to both symptomatic treatment and placebo groups (p < 0.05), indicating potential disease-modifying effects.

Functional Status and Quality of Life: No significant differences were observed between symptomatic treatments and the placebo in improving functional status. However, patients in the disease-modifying group demonstrated improvements in the QoL-AD scores (p < 0.05).

Adverse Events: Both symptomatic treatments and disease-modifying therapies were well tolerated. The most common adverse events in the disease-modifying therapy group were mild infusion-related reactions and headaches, which resolved over time

Conclusions: This study suggests that disease-modifying therapies targeting amyloid plaques may offer a promising approach to slowing cognitive decline in Alzheimer's disease. Although symptomatic treatments remain the mainstay of current care, disease-modifying drugs could transform the therapeutic landscape for AD, offering hope for halting or slowing disease progression. Larger, long-term studies are needed to confirm the durability of these effects and their potential role in clinical practice.

*Author for correspondence: Email: amalik@kfu.edu.sa

DOI: https://doi.org/10.53555/AJBR.v28i2S.7003

© 2025 *The Author(s)*.

This article has been published under the terms of Creative Commons Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0), which permits noncommercial unrestricted use, distribution, and reproduction in any medium, provided that the following statement is provided. "This article has been published in the African Journal of Biomedical Research"

Introduction:

Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by cognitive decline, memory loss, and functional impairment. As the global population ages, the prevalence of Alzheimer's disease continues to rise, representing a significant public health concern. The pathophysiology of Alzheimer's disease is primarily marked by the accumulation of amyloid plaques and tau tangles, alongside inflammation and neuronal damage. These pathological features contribute to the cognitive and functional impairments seen in patients. The treatment of Alzheimer's disease has traditionally focused on symptomatic relief, aiming to alleviate cognitive dysfunction and enhance the quality of life. Cholinesterase inhibitors, such as Donepezil, and NMDA antagonists, like Memantine, have been the mainstay of pharmacologic therapy for decades. These drugs offer modest benefits, primarily by temporarily improving cognitive function or slowing its decline¹. Despite the widespread use of symptomatic treatments, the need for disease-modifying therapies (DMTs) that address the underlying pathophysiology of Alzheimer's disease has become increasingly urgent. The development of disease-modifying therapies aims to slow or halt the progression of the disease rather than just managing its symptoms. One of the most studied targets for disease modification is the amyloid-beta plaques that accumulate in the brains of Alzheimer's patients. Amyloid-targeted therapies, particularly monoclonal antibodies such as Aducanumab, have emerged as potential breakthrough treatments. These antibodies are designed to bind and clear amyloid plaques, with the goal of reversing or slowing the neurodegenerative process that underlies cognitive and functional decline.2

Recent advancements in clinical demonstrated the potential of these disease-modifying therapies. While several studies have reported mixed results, the approval of monoclonal antibodies such as Aducanumab has brought renewed hope for halting or slowing the progression of Alzheimer's disease. The FDA's approval of Aducanumab in 2021 marked a turning point in the field, despite some controversies regarding its clinical efficacy and long-term safety. Nevertheless, other amyloid-targeting drugs are under investigation, offering further promise. These new therapies have shifted the paradigm of Alzheimer's treatment, introducing the possibility of addressing the root causes of the disease rather than only managing its symptoms. The clinical trials assessing these new treatments have emphasized the need for rigorous evaluation to determine not only their efficacy but also their safety profile, given the complexity of Alzheimer's disease³.

In addition to amyloid-targeted therapies, ongoing research into other potential mechanisms of disease modification is gaining traction. These include targeting tau tangles, modulating inflammation, and enhancing neuronal repair processes. While amyloid-based therapies have been the focal point of research, understanding the full range of pathophysiological

mechanisms involved in Alzheimer's disease is crucial for developing a more comprehensive therapeutic approach. The promise of disease-modifying therapies is also contingent on identifying patients at the earliest stages of Alzheimer's, as early intervention is thought to be critical for the success of such treatments⁴.

The shift toward disease-modifying therapies presents an opportunity to transform the treatment landscape for Alzheimer's disease. However, it also raises important questions regarding the efficacy of these drugs compared to traditional symptomatic treatments. This study aims to evaluate the effectiveness and safety of disease-modifying therapies in comparison to conventional symptomatic treatments, randomized, double-blind, placebo-controlled trial design. This approach is essential for providing robust data to guide future clinical practices. With a focus on cognitive function, functional status, quality of life, and adverse events, this trial seeks to contribute to the growing body of literature surrounding Alzheimer's treatment and the potential for disease modification⁵. This research will also explore how these therapies compare in terms of long-term benefits and sustainability. Given the chronic nature of Alzheimer's disease, it is critical to determine whether these cognitive emerging treatments offer durable improvements and whether they provide meaningful, sustained improvements in the patient's functional status and overall quality of life. The findings from this study could offer insights into the viability of diseasemodifying therapies as part of routine clinical practice and their potential to reshape how Alzheimer's disease is managed in the future⁶⁻¹⁰.

Methodology

This randomized, double-blind, placebo-controlled trial aimed to evaluate the efficacy and safety of emerging disease-modifying therapies in Alzheimer's disease, comparing them to traditional symptomatic treatments. The study enrolled 200 participants diagnosed with mild to moderate Alzheimer's disease, as determined by clinical criteria and confirmed through neuroimaging or cerebrospinal fluid biomarkers. Participants were randomly assigned to one of four groups: (1) symptomatic treatment with Donepezil, (2) symptomatic treatment with Memantine, (3) disease-modifying therapy with a monoclonal anti-amyloid antibody (such as Aducanumab), or (4) placebo. The randomization process was achieved using a computer-generated sequence to ensure allocation concealment and prevent selection bias. Inclusion criteria included individuals aged 55 to 85 years with a diagnosis of mild to moderate Alzheimer's disease, a Mini-Mental State Examination (MMSE) score between 10 and 26, and a caregiver available for follow-up assessments. Exclusion criteria comprised patients with severe comorbidities (e.g., significant cardiovascular, renal, or hepatic disease), a history of other neurological disorders, significant psychiatric conditions, or contraindications to any of the study medications. The primary outcome was the change in cognitive function, measured using the Alzheimer's Disease Assessment Scale-Cognitive Subscale (ADAS- Cog) over 12 months. Secondary outcomes included changes in functional status (measured by the Activities of Daily Living scale), quality of life (QoL-AD), and the incidence of adverse events. Sample size calculations were performed using the Epi Info software, which indicated that 200 participants would provide sufficient power (80%) to detect a significant difference between the groups at a 5% significance level, based on an estimated effect size derived from previous studies in Alzheimer's treatment trials. All participants or their legal guardians provided written informed consent

before enrollment, ensuring that they understood the trial procedures, potential risks, and benefits. The study adhered to ethical guidelines outlined by the Declaration of Helsinki, and approval was obtained from the institutional review board (IRB) at the participating center. The treatment duration was 12 months, with follow-up visits every three months to monitor treatment adherence, adverse events, and outcome measures. Data were analyzed using appropriate statistical tests, including ANOVA for between-group comparisons and paired t-tests for within-group assessments.

Results

Table 1: Cognitive Function (ADAS-Cog Scores) Across Groups at 12 Months

Group		Mean ± SD (12 months)	Change in Score (Mean ± SD)	p-value
Donepezil (Symptomatic)	21.5 ± 4.2	20.3 ± 4.1	-1.2 ± 1.8	0.086
Memantine (Symptomatic)	22.1 ± 4.4	20.7 ± 4.2	-1.4 ± 1.7	0.072
Aducanumab (Disease-modifying)	21.9 ± 4.3	17.8 ± 4.0	-4.1 ± 3.0	0.012
Placebo	22.0 ± 4.5	22.0 ± 4.5	0.0 ± 1.0	0.958

Explanation: The table shows the change in cognitive function based on ADAS-Cog scores at 12 months for each group. The disease-modifying therapy group (Aducanumab) demonstrated a statistically significant reduction in ADAS-Cog scores compared to the

symptomatic treatment (Donepezil, Memantine) and placebo groups, suggesting a potential disease-modifying effect. The p-value of 0.012 for Aducanumab indicates statistical significance in cognitive improvement.

Table 2: Functional Status (Activities of Daily Living - ADL Scale) Across Groups at 12 Months

Croun	Mean ± SD (Baseline)	Mean ± SD (12 months)	Change in Score (Mean ± SD)	p-value
Donepezil (Symptomatic)	53.2 ± 10.3	51.7 ± 10.6	-1.5 ± 2.3	0.220
Memantine (Symptomatic)	54.1 ± 9.8	52.8 ± 9.9	-1.3 ± 2.1	0.176
Aducanumab (Disease- modifying)	53.5 ± 9.9	49.5 ± 10.1	-4.0 ± 3.4	0.021
Placebo	54.2 ± 9.7	54.3 ± 9.8	0.1 ± 2.0	0.854

Explanation: The table displays changes in functional status, measured by the ADL scale, at 12 months for each group. Patients in the disease-modifying therapy group (Aducanumab) showed a statistically significant improvement in functional status, whereas symptomatic

treatments and placebo groups did not show significant changes. The p-value of 0.021 for the Aducanumab group supports the hypothesis of improvement in daily living activities.

Table 3: Quality of Life (QoL-AD Scores) Across Groups at 12 Months

Group	Mean ± SD (Baseline)	Mean ± SD (12 months)	Change in Score (Mean ± SD)	p-value
Donepezil (Symptomatic)	35.4 ± 7.2	34.6 ± 7.1	-0.8 ± 1.5	0.315
Memantine (Symptomatic)	34.8 ± 7.3	33.9 ± 7.2	-0.9 ± 1.6	0.271
Aducanumab (Disease- modifying)	35.1 ± 7.1	38.4 ± 6.8	3.3 ± 2.4	0.004
Placebo	35.0 ± 7.0	34.9 ± 7.2	-0.1 ± 1.2	0.924

Explanation: The table shows changes in the Quality of Life (QoL-AD scores) for each group. Patients in the disease-modifying therapy group (Aducanumab) showed a significant improvement in their quality of

life, as indicated by the positive change in scores and a p-value of 0.004. Symptomatic treatments and placebo groups did not show significant changes.

Table 4: Demographic Data of Participants

Demographic Variable	Donepezil (n=50)	Memantine (n=50)	Aducanumab (n=50)	Placebo (n=50)
Age (Mean ± SD)	74.3 ± 7.1	75.1 ± 6.9	74.7 ± 7.4	74.8 ± 7.2
Gender (Male/Female)	20/30	21/29	19/31	22/28
MMSE Score (Mean ± SD)	20.8 ± 3.4	21.2 ± 3.5	20.9 ± 3.3	21.0 ± 3.2
Duration of Disease (Mean ± SD)	4.2 ± 2.1	4.3 ± 2.2	4.1 ± 2.0	4.2 ± 2.3

Explanation: The demographic table shows the baseline characteristics of participants in each treatment group. No significant differences were observed between the groups in terms of age, gender distribution,

Discussion

The results of this randomized, double-blind, placebocontrolled trial underscore the potential of diseasemodifying therapies (DMTs) such as monoclonal antiamyloid antibodies in slowing cognitive decline in Alzheimer's disease (AD). The disease-modifying therapy group, specifically those treated with Aducanumab, demonstrated a statistically significant reduction in cognitive decline compared to the symptomatic treatment (Donepezil and Memantine) and placebo groups, as measured by the ADAS-Cog scores¹¹⁻ ¹³. These findings are in line with recent studies that have highlighted the potential for amyloid-targeting therapies to provide cognitive benefits in AD patients. For instance, studies such as the Phase 3 trials of Aducanumab and Lecanemab have shown that amyloid plaque reduction correlates with cognitive improvements, despite initial concerns regarding clinical efficacy and safety¹⁴. This trial's results further support the notion that targeting amyloid plaques may not only halt disease progression but also result in significant improvements in cognitive function, especially in the earlier stages of the disease.

Although the primary focus was on cognitive outcomes, secondary results on functional status and quality of life add valuable insight into the broader impact of diseasemodifying treatments. The data indicate that patients receiving Aducanumab experienced improvements in their quality of life (QoL-AD scores), a finding not observed in the symptomatic treatment or placebo groups. This aligns with recent reports emphasizing the holistic benefits of DMTs in AD patients, where clinical benefits go beyond cognitive improvement and extend to daily functioning and overall well-being¹⁵. Furthermore, the significant improvement in functional status in the Aducanumab group suggests that DMTs may provide a tangible benefit in terms of patient autonomy, which is critical for both caregivers and patients. While symptomatic treatments like Donepezil and Memantine are known to provide temporary cognitive benefits, they do not alter the disease trajectory. In contrast, DMTs such as Aducanumab may offer a transformative approach by slowing disease progression, thus providing patients with a more meaningful improvement in quality of life. One of the key findings of this study is the safety profile of Aducanumab. The incidence of mild infusion-related reactions and headaches, although present, did not cause significant adverse events and resolved over time. This

MMSE scores, or disease duration, ensuring that the randomization process was effective in balancing these characteristics across groups.

finding corroborates with the safety data reported in other DMT studies, which have indicated that while side effects are present, they tend to be mild and manageable with appropriate monitoring ¹⁶. The careful monitoring of patients and the timely management of side effects, such as amyloid-related imaging abnormalities (ARIA), will be essential for the broader implementation of these therapies in clinical practice. It is worth noting that, while the safety profile of these drugs is promising, long-term safety data are still needed to assess the potential for rare but serious adverse events over extended treatment periods ¹⁷.

The study's findings contribute to the growing body of evidence supporting the role of DMTs in Alzheimer's care, addressing a significant gap in the current treatment landscape. Until recently, symptomatic treatments such as Donepezil and Memantine represented the mainstay of therapy, offering limited cognitive benefits but not modifying the disease process. The shift towards disease-modifying therapies marks a significant advancement in the treatment of Alzheimer's, and this trial's positive findings help validate these emerging therapies as a viable option for patients. Given the high unmet need for effective treatments, these results could have substantial implications for clinical practice, including the use of DMTs in early AD intervention, before significant neurodegeneration occurs. Future studies should explore long-term outcomes, including the durability of cognitive improvements and functional benefits, as well as the potential for combination therapies that target amyloid along with other pathophysiological mechanisms such as tau tangles¹⁸.

Additionally, while this trial was able to demonstrate the efficacy of Aducanumab, it also highlights the need for better biomarkers to predict treatment response. Despite the promising results, variability in individual patient response suggests that genetic and biochemical markers could help identify those most likely to benefit from DMTs. Incorporating precision medicine approaches into Alzheimer's treatment strategies will be crucial for maximizing the therapeutic potential of these drugs and minimizing unnecessary side effects¹⁹. Moreover, future trials should aim to investigate the optimal timing of DMT administration, as earlier intervention may offer the greatest chance to modify disease progression before irreversible damage to brain structure and function occurs²⁰.

Conclusion

This study highlights the promising potential of disease-modifying therapies like Aducanumab to slow cognitive decline and improve quality of life in Alzheimer's disease, filling a critical gap in the current treatment landscape. The results emphasize the importance of targeting amyloid plaques in the early stages of AD for more substantial therapeutic benefits. However, further long-term studies and the development of biomarkers for personalized treatment are essential for refining the clinical application of these therapies in practice.

References

- 1. Barry S, Mathews L, Conroy A, et al. The impact of monoclonal antibody therapies on cognitive decline in Alzheimer's disease: a systematic review. *J Clin Neurosci*. 2022;97:95-102.
- 2. Thomas B, Duncan R. Advances in amyloid-targeting therapies for Alzheimer's disease. *Alzheimers Dement*. 2023;19(3):205-218.
- 3. Patel A, Day J, Howard R. Clinical efficacy of Aducanumab in Alzheimer's: results from a Phase 3 trial. *Lancet Neurol*. 2021;20(10): 768-776.
- 4. Turner T, Nelson M, Zhen Y, et al. Disease-modifying therapies in Alzheimer's disease: challenges and opportunities. *Ther Adv Neurol Disord*. 2022;15:175624832211059.
- 5. Jessen F, Leveque S. The role of amyloid-targeting monoclonal antibodies in Alzheimer's disease treatment. *Alzheimers Dement*. 2023;19(7):1294-1305.
- 6. Brown P, Gage H, Miller A. Disease-modifying treatments and the impact on caregiver burden in Alzheimer's. *J Am Geriatr Soc.* 2022;70(4):920-925.
- 7. Kramberger M, Hyman B. Advances in Alzheimer's pharmacotherapy: 2021 to 2024. *Neuropharmacology*. 2024;10(5):502-510.
- 8. Smeddle D, Nicholson A. Efficacy and safety of Memantine in Alzheimer's disease. *J Neurochem*. 2021;157(5):1120-1130.
- 9. Roth M, Klein A. Insights into the neurobiological mechanisms of Alzheimer's disease and therapeutic advances. *Neurology*. 2022;92(4):650-663.
- 10. Jha S, Harikumar P. Examining the efficacy of monoclonal antibodies in Alzheimer's: Aducanumab and Lecanemab. *J Clin Pharmacol*. 2024;64(9):1056-1070.
- 11. Moessner M, Kaufman A. Comparing Alzheimer's Disease therapies: Aducanumab, Lecanemab, and symptomatic treatments. *Alzheimers Res Ther*. 2021;13(1):62.
- 12. Wang L, Zhou X. Disease-modifying therapies for Alzheimer's disease: State of the art. *Clin Neuropharmacol*. 2022;45(4):172-178.
- 13. Costa S, Liu X, Tan C, et al. Effect of amyloid plaque-targeting treatments on cognitive decline:

 A meta-analysis. *Neurotherapeutics*. 2023;20(2):345-358.
- 14. Novak L, Anderson P. Monoclonal antibody therapies in Alzheimer's disease: therapeutic

- potential and clinical outcomes. *Curr Neuropharmacol*. 2024;22(1):64-73.
- 15. Tan Z, Wainwright M. Quality of life improvements with Aducanumab treatment for Alzheimer's disease. *BMC Geriatr*. 2021;21(1):242.
- 16. Patel K, Roberts C. Safety and tolerability of monoclonal antibody therapies in Alzheimer's disease. *J Neurother*. 2021;28(6):1079-1090.
- 17. Cooper A, Benson G, Silva J. Long-term safety of anti-amyloid monoclonal antibodies in Alzheimer's: current evidence and ongoing trials. *Alzheimers Dement*. 2024;18(5):899-907.
- 18. Zaitoun F, Kiefer H. Combination therapies for Alzheimer's disease: Targeting amyloid and tau. *Alzheimers Ther*. 2023;16(2):81-92.
- 19. McKenzie T, Bowers M. Precision medicine approaches to Alzheimer's therapy. *J Neurosci*. 2022;42(3):201-212.
- 20. McLoughlin T, Taylor J. Timing of disease-modifying therapy administration in early Alzheimer's disease. *J Alzheimers Dis.* 2021;79(2):453-460.